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ABSTRACT

Producing reliable land use and land cover maps to sup-
port the deployment and operation of public policies is a
necessity, especially when environmental management and
economic development are considered. To increase the
accuracy of these maps, satellite image time-series have
been used, as they allow the understanding of land cover
dynamics through the time. This paper presents the st-
metrics, a python package that provides the extraction of
state-of-the-art time-series features. These features can be
used for remote sensing time-series image classification
and analysis. stmetrics aims to be an easy-to-use pack-
age. The package is available under the GNU GPL software
license, and the full source code is available for download at:
github.com/andersonreisoares/stmetrics.

Index Terms— time-series, python, multi-temporal fea-
tures, remote sensing

1. INTRODUCTION

Satellite image time-series (SITS) became an important tool
to produce and regularly update accurate temporal land-cover
maps [1]. SITS allow the analysis of the dynamic of land
cover through the time component. They offer a great poten-
tial for understanding the land cover behavior.
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As time-series can be related to land cover patterns, the
extraction of features from time-series to perform Land Use
and Land Cover (LULC) classification became a common
approach [2], especially in the remote sensing field. In or-
der to handle the enormous amount of data available in these
datasets, data mining has been employed as a supporting tool.
According to [3], data mining can be used to discover corre-
lations, patterns and trends in the dataset through techniques
such as pattern recognition, mathematics and statistics.

Several types of features can be combined to assist clas-
sification models, such as basic metrics that are derived from
statistical measures like mean, standard deviation and min-
imum and maximum values of the time-series [4]. Besides
that, [5] proposed the use polar metrics, that are derived from
a time wheel legend, which projects the values of a time-
series to angles in the interval [0, 2π]. According to the au-
thors, it provides a new visualization scheme that can help
to describe the pattern represented in the time-series. An-
other important group of metrics are the phenological met-
rics or phenometrics. These metrics aim to be directly related
to the agriculture calendar, as the assumption is that every
crop type under investigation has an unique phenology [6].
Usually, robust methods are implemented to extract this type
of features. They perform local mathematical models fitting
to time-series, aiming to handle noisy data and non-periodic
time-series with different types of changes [7].

The use of phenological features extracted from image
time-series, such as minimum and maximum values and the
respective times of their occurrence, can be important assets
for developing agriculture mapping methods. [8, 9] showed
that phenological metrics can be derived at a 30-meter spatial
resolution, and a high temporal resolution, between 5 and 8
days, enables mapping of agricultural classes with good ac-
curacies (> 80%).

In this paper, we present a new python package that has
been developed to extract basics and polar features from



Fig. 1. General overview of the package structure.

SITS. The paper is structured as follows: first, it is demon-
strated how the package is organised and how the data is
structured in section 2; in section 3, we present some results
and applications for SITS classification and, at section 4,
conclusion and remarks are presented.

2. THE PACKAGE

The stmetrics package relies on other commonly used open
source libraries: Numerical and Scientific Python (NumPy
and SciPy) [10, 11], Matplotlib [12], Shapely [13] and
Descartes[14]. A general overview on the architecture and
execution pipeline of the package is presented at Fig. 1.

The package has currently two modules for metrics ex-
traction. The first one computes basic metrics, that are derived
from the time-series using common statistical approaches.
With this module, 7 metrics are computed: mean, maximum,
minimum, standard deviation, accumulated sum, amplitude
and the maximum value of the first slope. They are refereed
on the package as basic metrics.

The second module implements the metrics proposed by
[5]. The authors adapted the time wheel legend proposed by
[15], by plotting each cycle of the profile, and by projecting
values to angles in the interval [0, 2π]. Let a cycle be a func-
tion f(x, y, T ) where (x, y) is the spatial position of a point,
and T is a time interval t1; . . . ; tN , where N is the number of
observations in such a cycle. The cycle can be visualized by
a set of values vi ∈ V , where vi is a possible value of f(x, y)
in ti. Let its polar representation be defined by a function
g(V ){A,O} (A corresponds to the abscissa axis in the Carte-
sian coordinates, and O to the ordinate axis) where:

ai = vicos
(2πi
N

)
∈ A, i = 1, ..., N. (1)

and
oi = visin

(2πi
N

)
∈ O, i = 1, ..., N. (2)

In both equations, 2πi
N is an arbitrary angle that depends

on the acquisition date and vi is the corresponding time-series
value. Table 2 describes the multi-temporal features (basic
and polar) available in the package.

There is a filtering approach to remove spikes from the
time-series. A spike, in the package context, is a point in the
time-series that is preceded and succeeded by points that have
0 as value. On Fig. 2, at the orange quadrant is possible to see
the differences caused by the filtering approach. This filtering
approach is especially necessary due to the polar transforma-
tion since this could lead to invalid polygons. This function
is used previously to the basic and polar modules. Currently,
the package does not perform smoothing or fitting functions
on the time-series, nor have methods to it.

(a) Time-series and polar representation without filtering.

(b) Time-series and polar representation with filtering.

Fig. 2. Example of time-series before and after filtering.

Another important operation is the replacement of all neg-
ative values on a time-series by their modules. This opera-
tion is also necessary due to polar transformation, as com-
plex polygons may be produced during the transformation if
the points have negative values. Differently from the filtering
approach, this operation is only performed previously to the
polar metrics.

3. APPLICATIONS

To present the applicability of the package, we present two
study cases, the identification of a landslide risk area at Rio
Grande do Sul state in Brazil and the classification of Land-
Use and Land-Cover (LULC) in the region of Vale do Rio
Doce, located in the state of Minas Gerais, Brazil.

For the first study case, the landslide identification on the
south region of Brazil, a time-series composed by 26 Nor-
malized Difference Vegetation Index (NDVI) images from
November 2015 to July 2019 was used. Polar and basic met-
rics were extracted, some examples are illustrated in Figure
3. The selected area is mainly composed of dense forest, pas-
ture and landslide scars along a dry river. In the basic metric
mean, the landslide scars are easy identified by their low val-



Table 1. Temporal features currently available on stmetrics.
Name Type Description Range
Amplitude Basic The difference between maximum and minimum values of a time-series. [0,1]
Mean Basic Average value of the time-series. [0,1]
Std Basic Standard deviation of the time-series. ≥ 0
Maximum Basic Maximum value of a time-series, sensitive to false highs and noise. [0,1]
Minimum Basic Minimum value of a time-series. [0,1]
Accumulated Sum Basic The sum of values over a time-series. ≥ 0
First Slope Basic Indicates when the TS presents some abrupt change. [-1,1]
Eccentricity Polar Values close to 0 if the shape is a circle and 1 if the shape is similar to a line. ≥ 0
Gyration radius Polar Average distance between each point inside the shape and the shape’s centroid. ≥ 0
Polar balance Polar The standard deviation of the areas per season, considering the 4 seasons. ≥ 0
Area Polar Area of the closed shape. A higher value indicates a series with high values. ≥ 0
Angle Polar The main angle of the closed shape created by the polar visualization. ≥ 0
Area per Season Polar Partial area of the closed shape in each quadrant of the polar representation. ≥ 0

ues (dark blue), once these are not vegetated areas. The land-
slide scars correspond to the strip format features along the
dry river path. On the other hand, once the event caused the
overturn of the dense forest, reducing drastically the NDVI
values, the standard deviation metric allows the identification
of the scars by their high values, represented in yellow. More-
over, regarding the polar metrics, the landslide scars present
high values for the metric polar balance and low for area.

(a) Mean (b) Standard Deviation

(c) Polar Balance (d) Area

Fig. 3. Examples of the spatialization of basic and polar fea-
tures extracted from all time-series in the first study case. The
red arrow points to the landslide scars.

For the second study case, 49 NDVI images to create the
time-series were used. They were acquired from Landsat-7
and Landsat-8 satellites, from May 2013 to November 2015.
Two experiments using the Random Forest algorithm were
performed. The first one considered only the pixels time-

series as features, while the second used not only the pixels
time-series, but also basic and polar metrics extracted from
them. The analyzed classes include agriculture, constructed
area, forest, mining, mining waste dam, grassland, planted
forest and water. The dataset used in both classifications was
composed of 378 pixel, obtained using high-resolution im-
ages from Google Earth, as suggested by [16]. The dataset
was equally divided for training and testing purposes respect-
ing the proportion 50/50. The classifications, Fig. 4, using
the time-series achieved an overall accuracy (OA) of 75.66%,
while the experiment that used also the basic and polar met-
rics achived an OA of 91.53%. Therefore, the use of the met-
rics resulted in a 15% increase in OA.

(a) Classifications obtained using only time-series.

(b) Classifications obtained using time-series with time metrics.

Fig. 4. Classifications obtained using the metrics extracted
with stmetrics.



4. CONCLUSIONS

This paper introduced the stmetrics package, available on
GitHub and developed for the extraction of basic and polar
features from SITS. Previously, the extraction of the po-
lar features was available only via C++ implementation on
GeoDMA software [5]. Thus, the development of this pack-
age in python language provides a simple way to use these
metrics, specially if the users do not have strong program-
ming skills.

The use of the package and the available metrics improved
the performance of the identification of landslide risk areas as
well as the classification of LULC. However, any other task
that uses time series approaches (e.g. land use and spatial
dynamics modeling) can test the extraction of basic and polar
features through stmetrics package to improve their results.

The best classification result derives from the use of the
time-series values along with the metric features. Despite
the great improvement on the performance, it is important
to point out that the best results will be achieved by using
a combination of time-series values and the time-series fea-
tures that are obtained by time metrics. For the next version
of the package, phenological metrics to derive the timing of
the agriculture calendar will be added, as well as enhance-
ments to improve the package overall performance.
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