Using SOM neural network to improve land use and cover training samples from satellite image time series

> Michelle C. A. Picoli Karine Ferreira Lorena Alves Gilberto Camara

PECORA

BRAZIL

DATA CUBE

ΙΝΡΕ

October 6-11, 2019 - Baltimore, Maryland, USA

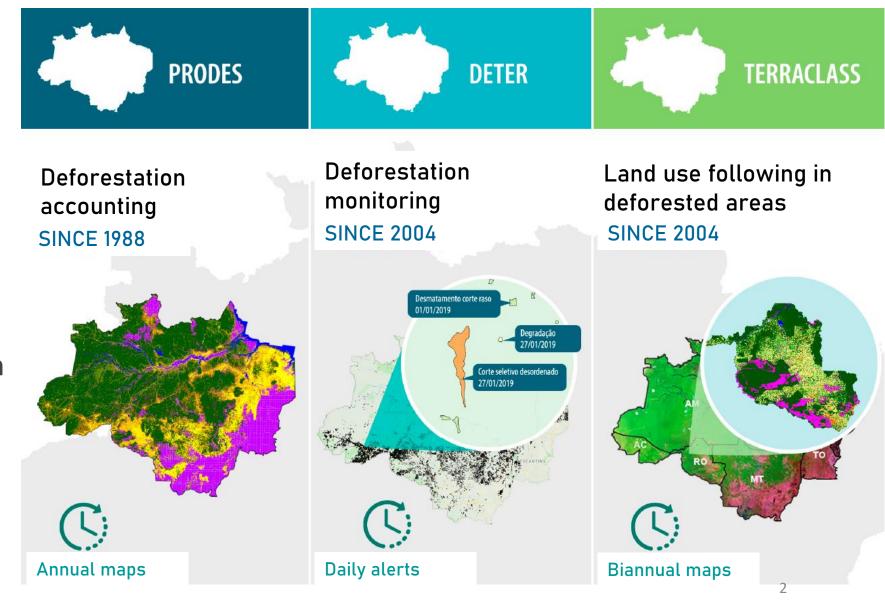
Continuous Monitoring of Our Changing Planet:

323

From Sensors to Decisions

Brazil National Institute for Space Research (INPE)

- We produce the official land
- use and cover information in
- Brazil using Earth Obsevation Data (EO).
- So far, we are using **methods**
- based on visual interpretation
- of remote sensing imagery.



Projects

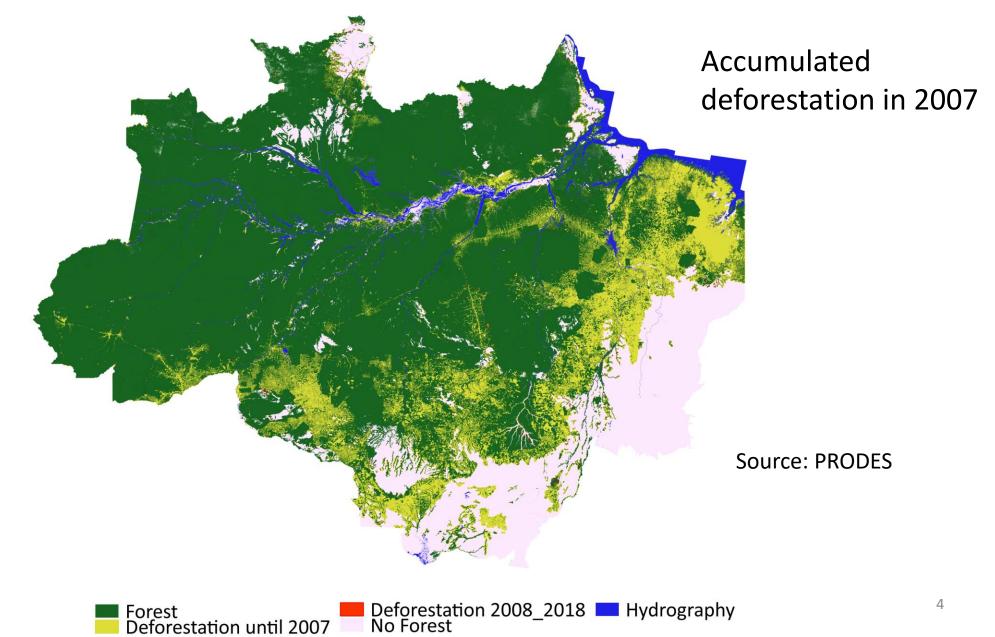
e-Sensing: to move from EO visual interpretation to semi automatic

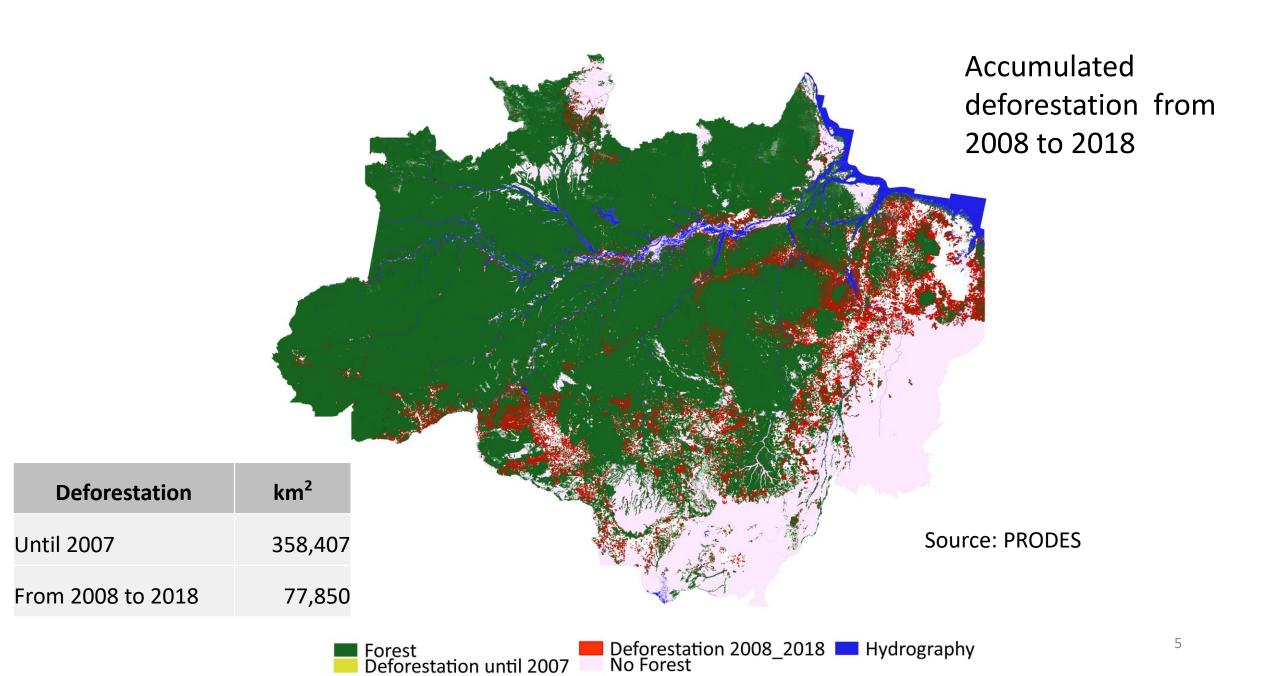
classification based on machine learning.

Brazil Data Cube: to produce, process and analyze big Earth observation

data sets for land use and cover change detection.

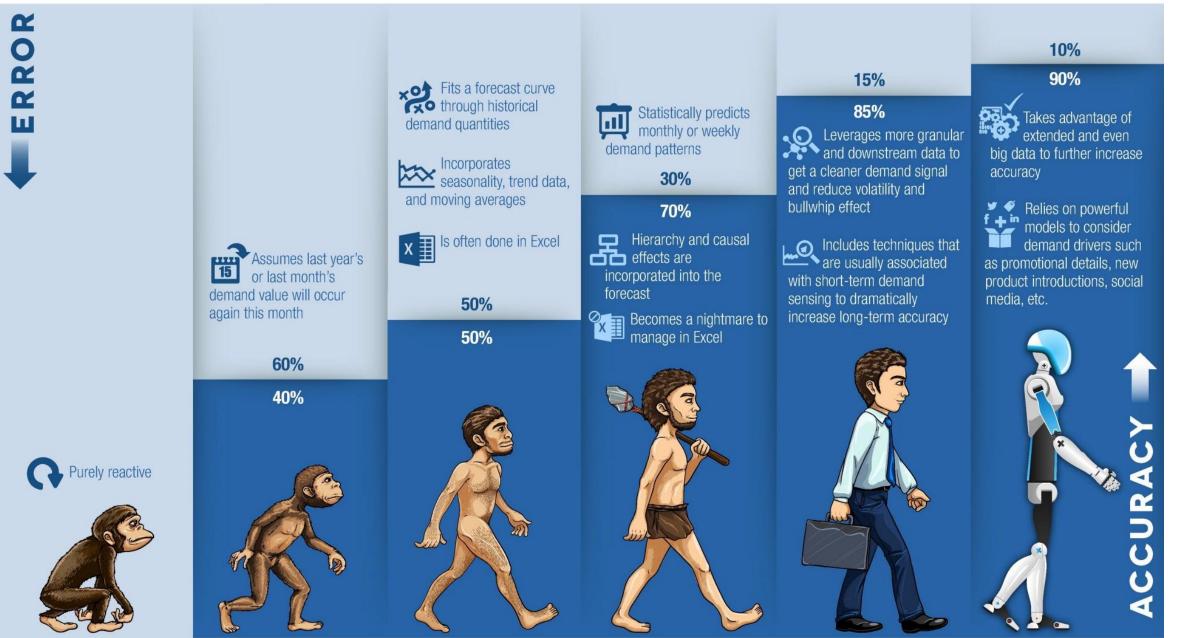
Why should we care about mapping land use?





source: toolsgroup.com

Machine Learning



Our analysis as good as our data

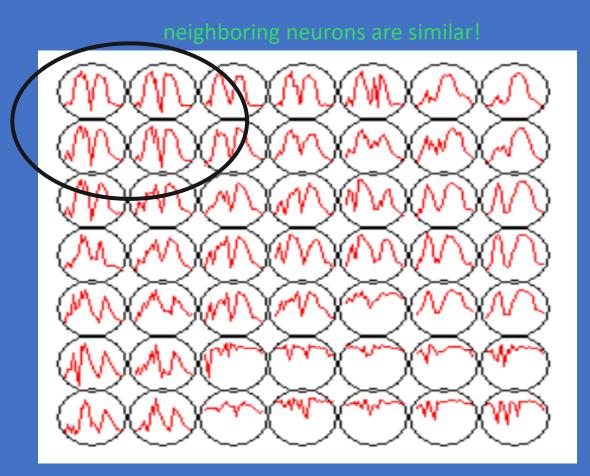
How do we improve the samples?

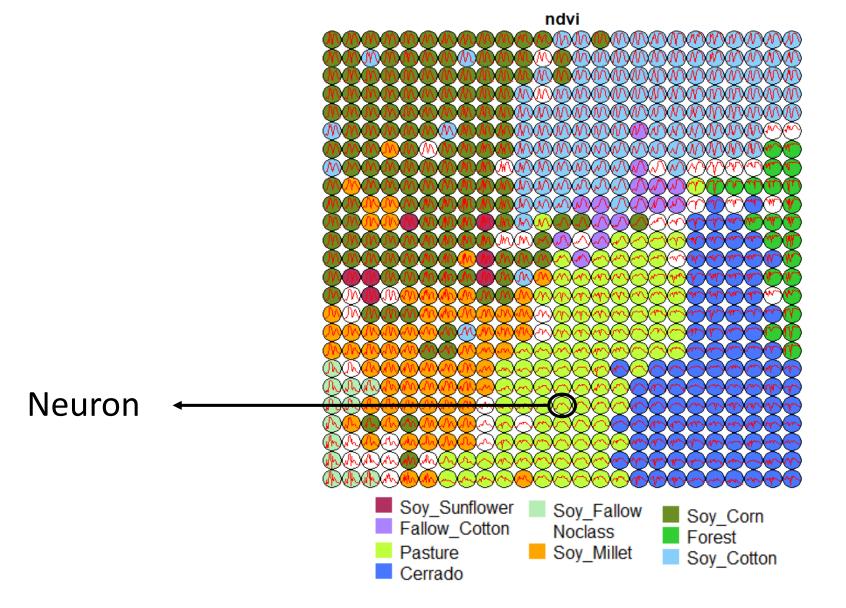
Self-Organizing Maps (SOM) neural network method to cluster

To improve the quality of the training sets for the machine learning classifiers.

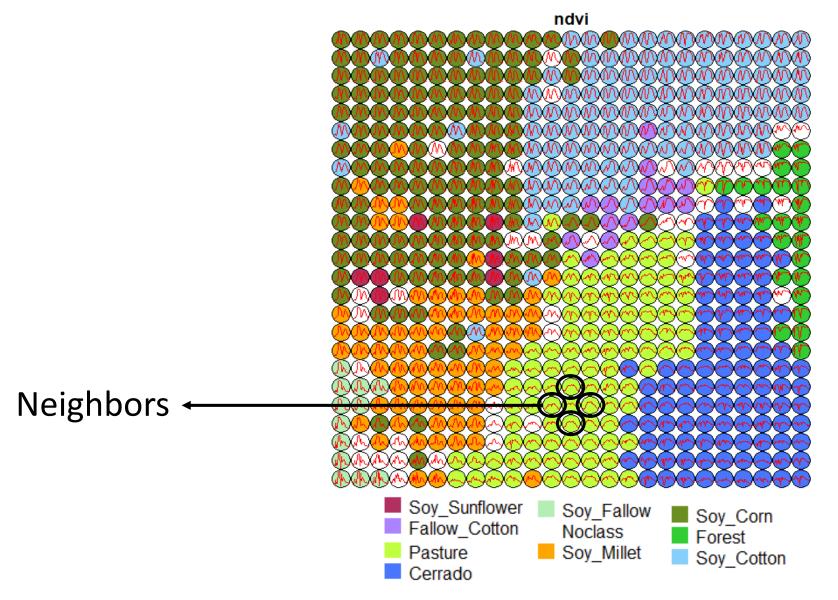
To evaluate which spectral bands and vegetation indexes are best suited for splitting among land use-cover classes.

SOM generates spatial clusters of similar patterns.

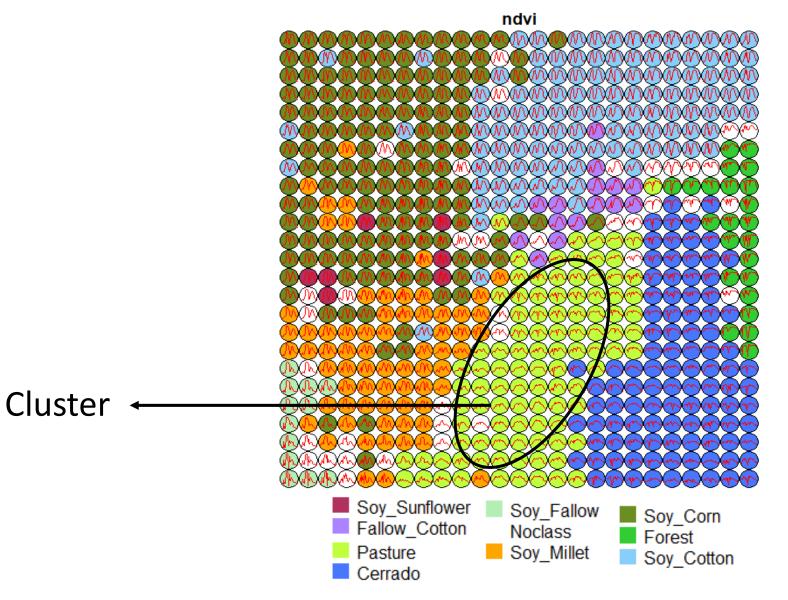




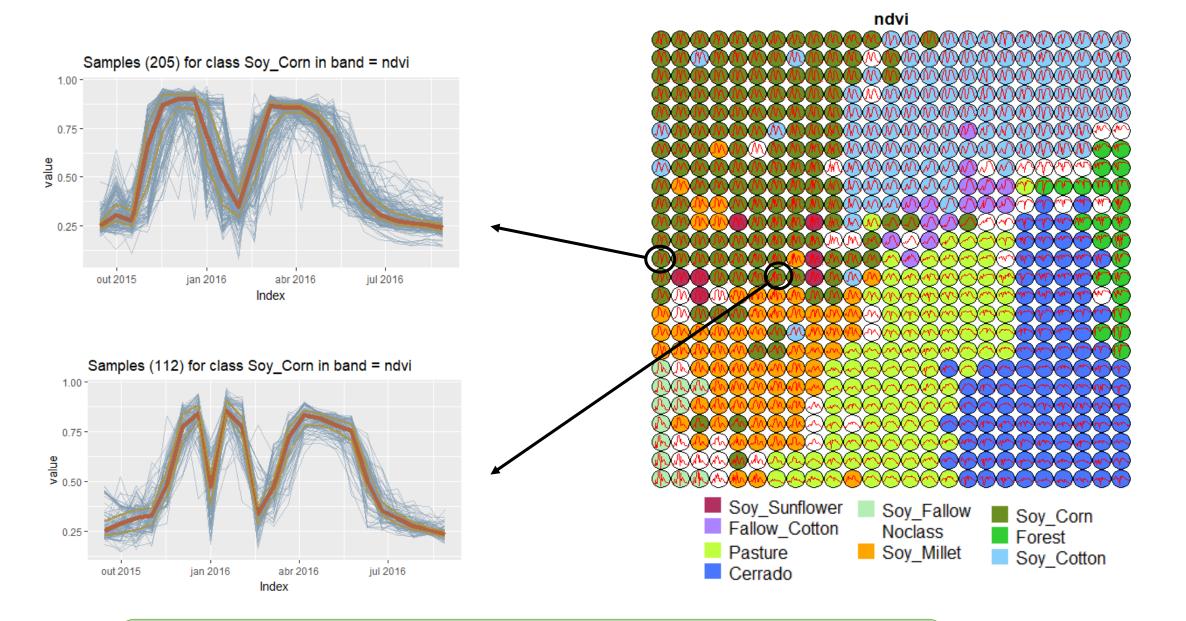
Source: Santos et al. (2019)



Source: Santos et al. (2019)



Source: Santos et al. (2019)

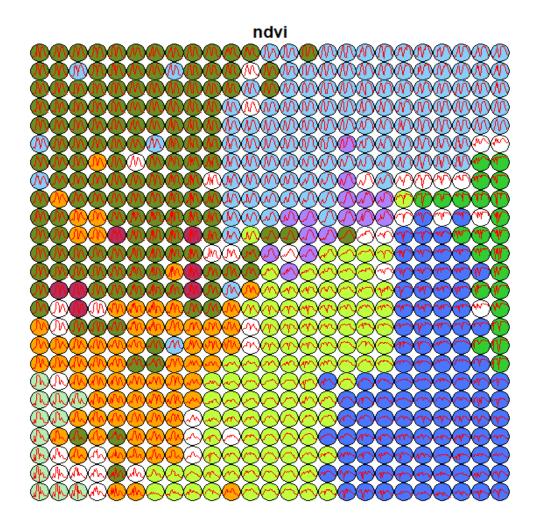


SOM can deal with the variability of vegetation phenology Source better than other methods.

Source: Santos et al. (2019)

We link each sample to the closest neuron. We minimize the distance iteratively.

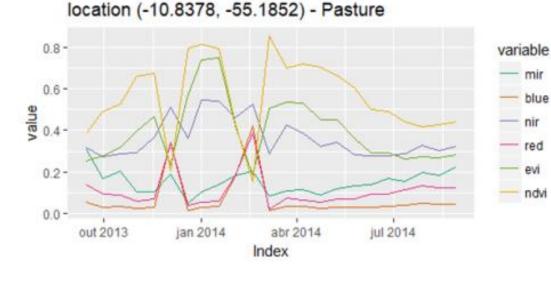
To label a neuron, we choose the most frequent sample label.

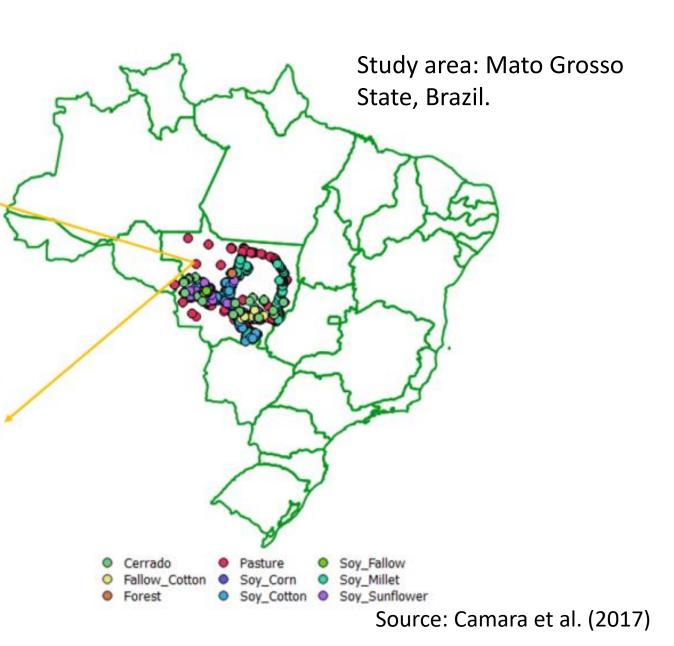


Experiment - Data

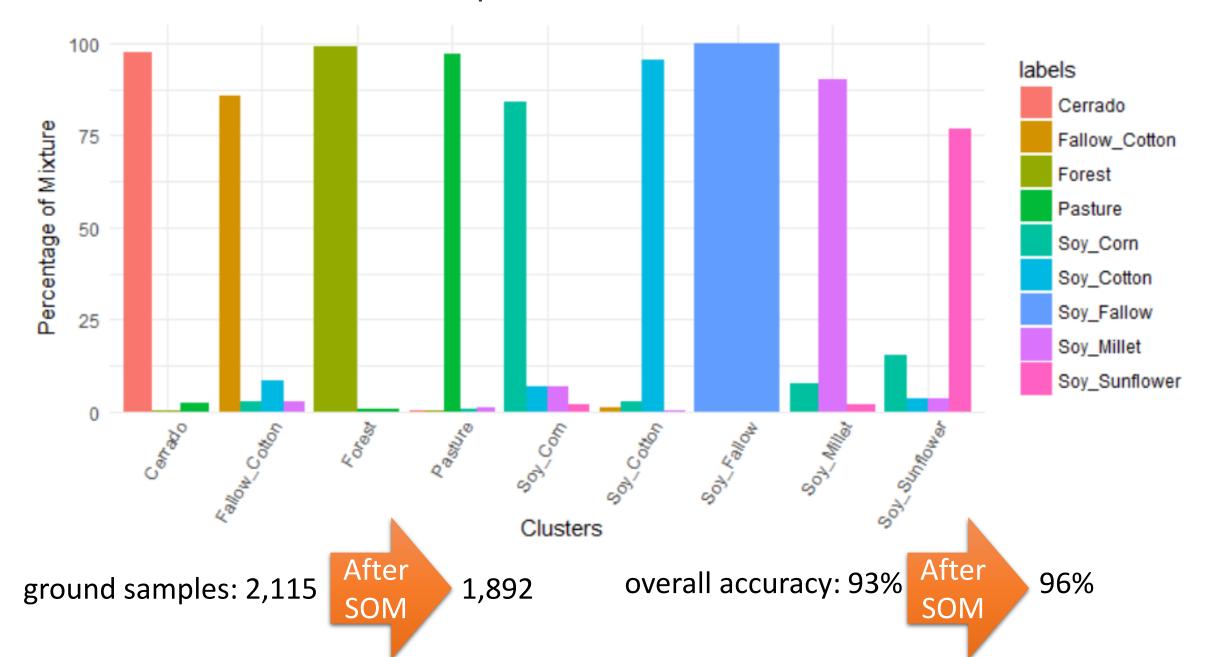
2,115 ground sample points (from 2000 to 2013) of nine land use and cover classes.

longitude	latitude	start_date	end_date	label
-55.1852	-10.8378	2013-09-14	2014-08-29	Pasture
-57.7940	-9.7573	2006-09-14	2007-08-29	Pasture
-51.9412	-13.4198	2014-09-14	2015-08-29	Pasture
-55.9643	-10.0621	2005-09-14	2006-08-29	Pasture
-54.5540	-10.3749	2013-09-14	2014-08-29	Pasture

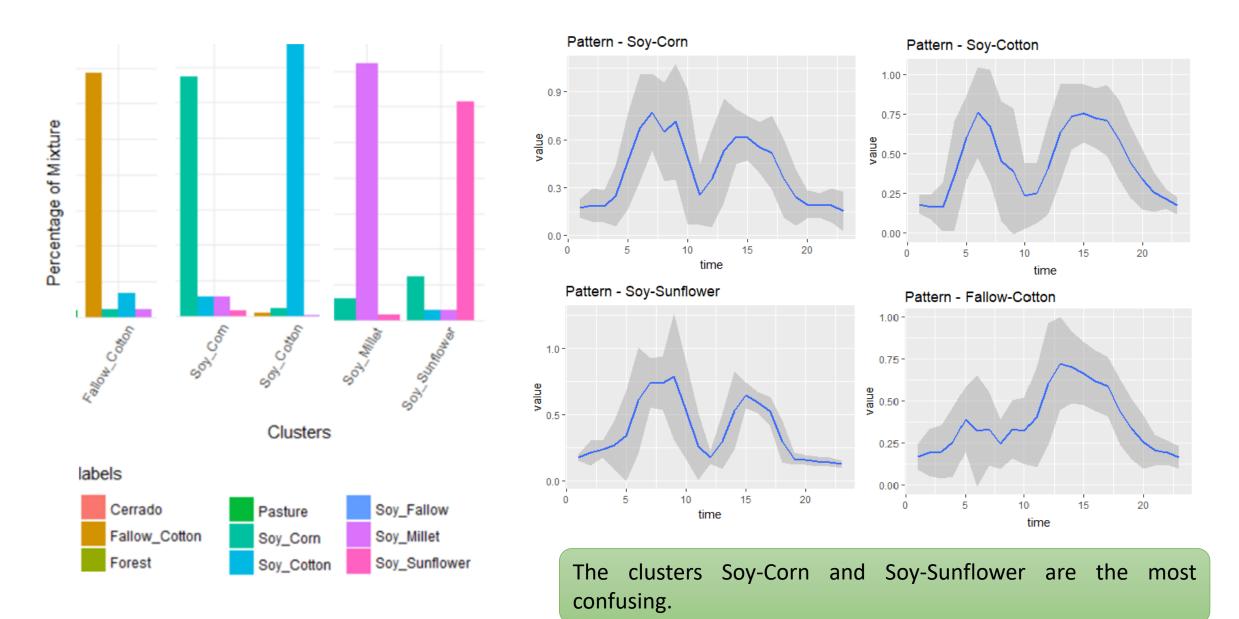




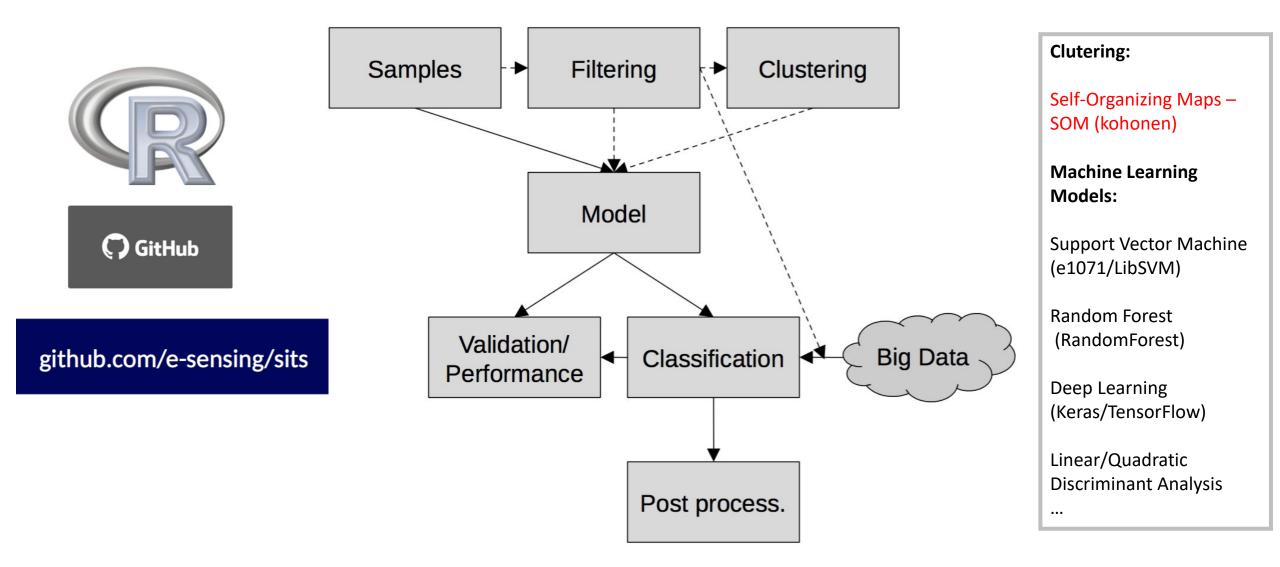
Experiment - Results



Experiment - Results



sits (Satellite Image Time Series) - R package



References

Santos et al. (2019) Self-Organizing Maps in Earth Observation Data Cubes Analysis.

https://doi.org/10.1007/978-3-030-19642-4_7

Camara et al. (2017) Land cover change maps for Mato Grosso State in Brazil: 2001-

2016

https://doi.org/10.1594/PANGAEA.881291

michelle.picoli@inpe.br

Technical information: lorena.santos@inpe.br

Thank you!

brazildatacube.dpi.inpe.br

20